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Nonlinear dynamics in the study of birdsong

Gabriel B. Mindlin

Departamento de Fisica, FCEyN, Universidad de Buenos Aires IFIBA, CONICET, Argentina

(Received 7 June 2017; accepted 17 August 2017; published online 19 September 2017)

Birdsong, a rich and complex behavior, is a stellar model to understand a variety of biological
problems, from motor control to learning. It also enables us to study how behavior emerges when a
nervous system, a biomechanical device and the environment interact. In this review, I will show
that many questions in the field can benefit from the approach of nonlinear dynamics, and how
birdsong can inspire new directions for research in dynamics. Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4986932]

Biologically inspired problems pose deep challenges to a
dynamicist. A biological problem needs to be framed
within the theory of evolution, with the profound complex-
ity it entails. Therefore, it is difficult to travel the road of
dimensionality reduction, or identify the basic mechanisms
behind the phenomenon under consideration, both of
which are core strategies followed by dynamicists to study
a problem. In this review, I will describe a dynamical
approach to one specific biological problem: birdsong
production.

I. INTRODUCTION

Birdsong is an interesting model in neuroethology, i.e.,
the neurobiology of behavior.! Among the several reasons
that contribute to its appeal are its complexity, its stereotypy
and why not, its beauty. For neuroscience, a particular inter-
est emerges from the observation that some degree of learn-
ing is involved in song production in approximately forty
percent of the known bird species.? Since learned vocal pro-
duction occurs rarely in the animal kingdom, songbirds
(which account for the majority of forty percent of birds that
learn their vocalizations) constitute a favorite animal model
to study the neurobiology of vocal learning.

The approach from neuroethology stresses how this
complex behavior emerges from the interaction between the
nervous system, the body and the environment.®> And, it is
precisely at the interaction between the nervous system and
the biomechanics that extremely interesting and pertinent
questions for dynamicists naturally emerge. For example,
how much of the acoustical complexity is due to the com-
plexity of the instructions that the nervous system sends to
the periphery, and how much is due to the nonlinear nature
of the vocal organ? Can the avian vocal organ respond in
complex ways to relatively simple physiological instruc-
tions? How many of the acoustic features are independently
controlled at the level of the nervous system? Do some fea-
tures arise together due to the nonlinear nature of the oscilla-
tions responsible for the sound production mechanism?
Unveiling these issues can provide neuroscientists with a
map of what is worth studying at the level of the nervous
system, and which features are conditioned by the dynamics
of the periphery.
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It is also interesting to address the complexity of the
physiological instructions driving the avian vocal organ. Its
operation requires the delicate interplay between the physio-
logical instructions that control its configuration,® and the
airflow necessary for song production, controlled by the
respiratory  system.” Remarkably, those physiological
instructions can themselves be understood as the solution of
reasonably low-dimensional dynamical systems. Could these
provide a link between the known anatomy of the parts of
the nervous system involved in birdsong production and their
macroscopic functionality? This observation can be framed
in an interesting debate: do cortical neural patterns represent
movement parameters, or do they constitute a dynamical sys-
tem that generates and controls motion?°

In this review, I will address both issues: how much of
the complexity found in birdsong is conditioned by the non-
linear nature of the vocal organ, and what we can learn about
the parts of the nervous system involved in song production
from the way the vocal organ is controlled. Dynamics will
provide a common language for our study.

Il. THE ANATOMY OF THE AVIAN VOCAL ORGAN

The avian vocal organ is the syrinx. In songbirds, it is a
bipartite structure at the junction between the bronchi and
the trachea.””® At each junction, there is a pair of labia which
can be set into oscillatory motion when strong enough air-
flow is established between them. In this respect, each of the
two sides of this bipartite structure behave somewhat simi-
larly to the human vocal folds, which can be set in oscillatory
motion when voiced sounds are uttered. Labial oscillations
modulate the airflow at each of the syringeal sides and, there-
fore, there is a periodic injection of air into the trachea
(assumed to be a tube of volume Vj). The rate of mass injec-
tion for a unit of volume q can be written in terms of air
velocity v, density p and lumen’s area A as

q = pAv/Vj.

The density perturbations induced by this mass injection, at
the base of the trachea, are ruled by
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with ¢, being the sound velocity.” Therefore, labial dynamics
are responsible for the temporal evolution of the lumen’s
area A and act as a sound source in the linear approximation
of the acoustic problem. The lumen’s area will be the prod-
uct of a transverse, constant length and a variable, whose
(nonlinear) dynamics describe the labial motion. The nonlin-
ear nature of labial dynamics is responsible for the harmoni-
cally rich content of the acoustic sound, which gets filtered
by different passive cavities as the sound waves find their
way from the sound source to the beak. In Fig. 1(a), we dis-
play the basic elements of this description. The air passing
through the syrinx is injected into the trachea, which con-
nects to the oroesopharingeal cavity, which opens towards
the exterior through the beak.

The syringeal configuration can be modified by the
action of muscles attached to it.*'° In Fig. 1(b), we show
two ventral muscles (syringealis ventralis, vS, and syringea-
lis tracheobronchialis, vIB) and two dorsal ones (tracheo-
bronchialis dorsalis, dTB, and syringealis dorsalis, dS). The
muscle vS attaches at the second cartilaginous bronchial
ring. Since the labia are housed in the inner part of the bron-
chi, between the second and third rings, the contraction of vS
stretches the labia, affecting the frequency at which they
oscillate under a given airflow. For this reason, the muscle
vS is involved in the modulation of the fundamental fre-
quency of a song. The muscle vTB controls the active sepa-
ration of the tissues that oscillate during phonation, while the
dorsal muscles dTB and dS control the active closing of the
lumen.

In light of this, there are two clearly distinct timescales
in the problem. The syllabic timescale involves the modula-
tions of the airflow below and above a phonating threshold,
as well as the modulations of the acoustic features achieved
by the activation of the muscles that alter the configuration
of the syrinx. These modulations are therefore actively con-
trolled and present periods from 50 ms to 400 ms, depend-
ing on the species and the syllable type. The labial
timescale is related to the self-induced oscillations taking
place when energy from the airflow is transferred to the
labia (typically, in the order of kHz). Due to the separation
between these two timescales, one can analyze the genera-
tion of birdsong by first studying the labial dynamics under
stationary parameters (i.e., the bifurcation diagram for the
dynamical system ruling the behavior of the labia) and then
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FIG. 1. The syrinx, the trachea and the oroesopharingeal cavity (a). Muscles
controlling the oscine syrinx. See text for full description (b).
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explore how sound is affected as the parameters are slowly
modulated."'

lll. THE FUNCTIONALITY. THE EQUATIONS OF A
SIMPLE MODEL

Let us start with a first attempt at modeling the labial
dynamics, whose oscillations are responsible for the airflow
modulations. For the moment, we will analyze the behavior
of one sound source, and we will assume that its two labia
(medial and lateral) are synchronized. We are postponing the
discussion about the circumstances under which this is a
realistic hypothesis for Sec. VII.

The variable in our first model will be x, describing the
departure of the labial midpoint position from rest. Its dynam-
ics will be ruled by Newton equations, where the forces are (i)
the elastic restitution, depending on the labial’s departure
from its rest position, (ii) the linear dissipation, which is pro-
portional to the labial velocity and includes both a negative
contribution accounting for the transfer of energy from the air-
flow to the mass as a mucosal wave propagates along the
labium and a positive contribution due to loss, (iii) the nonlin-
ear dissipation, which is responsible for bounding the oscilla-
tions, and represents either the labia collapsing against the
containing walls or against each other, and (iv) forces repre-
senting active adduction (pulling the labia together) and
abduction (labial separation). These last forces do not depend
on x, or its time derivative. This model, then reads'?

dx
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B ket ) — (B0 — o)y — eney

+ Vz(fadd(l) 7.fabd(l‘))7

where k(t) describes the restitution (proportional to the ten-
sion of the labia), B(t) — B, is the negative dissipation (pro-
portional to the air sac pressure responsible for establishing
the airflow through the lumen), and vy is the problem’s time-
scale. There are two sources of nonlinearities in this first
model: at the restitution and at the losses. As soon as the
labia depart from equilibrium, they would collide with each
other or against the containing walls, dramatically losing
their energy. This is modeled through a nonlinear dissipation
term (i.e., a term which is important when the variable is
away from its equilibrium position).

As soon as we introduce nonlinearities, the modulation
of the fundamental frequency will involve both f§ and k. Let
us show that this is the case by analyzing the bifurcation dia-
gram of this model (operating at f,,;; = fapa = 0).

Scaling the time throughr =T't, I’ = ﬁ, defining
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Analyzing the radial part of this complex equation and its
phase, we get that, at the Hopf bifurcation, the frequency of
the oscillation being born is:

o = k(1 + 3¢p).

This means that the isofrequency curves (i.e., curves in
parameter space (f3, k), defined as k = k(f3), for which solu-
tions with a given fundamental frequency exist) meet the
Hopf bifurcation curve with negative slopes. For higher val-
ues of the parameter f, it is possible to show that the isofre-
quency curves present positive slopes (since @ ~ k/f). In
Fig. 2, we show a numerically obtained diagram of isofre-
quency curves for this simple model, for the region of the
(P, k) parameter space with oscillations. With the help of
this diagram, it is easy to infer that for a given value of f3, we
need to increase the parameter k in order to obtain oscilla-
tions of higher fundamental frequency . However, modulat-
ing the frequency can be trickier. In a region of parameter
space where the isofrequencies have negative slopes, it is
possible to keep the labial tension constant and increase the
fundamental frequency by increasing f. It could even be
possible to reduce the tension slightly, while the pressure is
being increased, and achieve an increase of the fundamental
frequency, as long as the slope of the curve in the parameter
space is smaller than the slope of the isofrequency. Modulo
these subtleties, one can use this static bifurcation diagram
to obtain good insight into how to translate physiological
gestures into acoustic features. The parameter f§ will have to
be moved from the region where no oscillations exist,
through the oscillating region in order to start the phonation.
In the course of this trajectory, the parameter k can be
moved, so that the fundamental frequency is properly mod-
ulated. The syllable will end as soon as the parameter f3 is
returned to the non-oscillating region of the parameter
space. In Fig. 2, we display a schematic path in parameter
space that would lead to an upsweep syllable, i.e., the fre-
quency would increase its value monotonically during the
phonation.

tension (k)

pressure ()

FIG. 2. Isofrequencies in the parameter space of a simple model for labial
dynamics. The slowly changing parameters during the production of a sylla-
ble are the coordinates of a trajectory in the parameter space. Pressure and
tension are (f3, k) in the model.
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IV. EXPERIMENTAL EVIDENCE

Testing this paradigm required a long experimental pro-
gram. The identification of the oscillating labia, as the sound
source required nothing less than direct visualization of the
labia during phonation. Goller and Larsen carried out this
experiment, which ended a long debate on the origin of the
sound. It was more complicated to build confidence on the
role played by the physiological parameters involved in bird-
song production and control, namely, the air sac pressure
and the activity of muscles controlling the configuration of
the syrinx. Let us review this research program.

The sub-glottal pressurization is a necessary condition
for establishing an airflow strong enough to start the self-
sustained labial oscillations responsible for sound produc-
tion. Birds have rigid lungs, and the air is passed through
them as air sacs (connected to the lungs) are compressed in a
coordinated fashion. It is relatively non-disruptive, then, to
measure the level of sub-glottal pressurization by inserting a
flexible cannula into one of these air sacs, with the cannula’s
free end connected to a transducer. In Fig. 3, we show three
syllables of a canary song.'? In the first panel, we display the
sound, as recorded by a microphone. In the second panel, the
air sac pressure is measured using a cannula inserted through
the abdominal sac with its free end connected to a miniature
piezoresistive pressure transducer mounted on the bird’s
back. The third panel in Fig. 3 corresponds to the electro-
myographic EMG activity pattern as measured by a very thin
wire implanted on the syringealis ventralis muscle (vS).
Details on both procedures can be obtained from the work of
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FIG. 3. Experimental recordings during the production of a canary syllable.
The sound (first panel), the air sac pressure (second panel), the electromyog-
raphy of the right muscle syringealis ventralis (third panel) and the sono-
gram (fourth panel).
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Suthers and Goller, who developed these techniques
originally.*'®

The first test of the simple dynamical model discussed
before precisely consisted of integrating the dynamical equa-
tions, using as (slowly) time dependent parameters, the enve-
lopes of the EMGs recorded as a bird song.'* The rationale
behind the procedure was that the contraction of the muscle
would stretch the labia, and that stretched labia would pre-
sent a higher restitution (k). Remarkably, the synthetic sound
generated by the model driven in this way shared acoustical
features with the song produced while the driving EMG was
recorded. In particular, it closely followed the modulation of
its fundamental frequency.

V. A MODEL FROM FIRST PRINCIPLES AND ITS
DYNAMICS

In the previous model, the parameter f§ was used to turn
on the labial oscillations, by parameterizing the energy trans-
fer to the labia. A model based on first principles would
allow us to find the actual link between this parameter and
the air sac pressure.

Let us assume that for sufficiently high values of air-
flow, the labia start to oscillate with a wavelike upward
motion."> In order to describe this wave, we introduce two
basic modes: a lateral displacement of the labia and a flap-
ping motion, as displayed in Fig. 4. This leads to an out-of-
phase oscillation of the top and bottom portions of the labia.
As before, a variable x will describe the medial position of a
labium and allows us to write a kinematic description of the
modal motion. This will be necessary to compute the actual
force between the labia. If a;, a; stand for the half separation
between the lower and upper edges of the labia, we can write
them as:

dx
a :Cllo+x+faa

B dx
a, = ax +x Tdt’
where ajg, apy are the half separations in the resting state
and 7 is the time the wave propagates along the labium takes
to traverse half the labial vertical size. In this geometry, the
average pressure between the labia for a given value of sub-
glottal pressure py, is:

FIG. 4. The modes of labia during one cycle.
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allowing us to write Newton’s equations for the labia as:

dx
dl *y7
dy _ 2 a
m— = —kx — by — cx"y + @iappsup | 1 —— ) + fo,
dt ay

which, expressing the half separations as functions of the
labial position, leads to

dx

d[ =Y
dy 1 2
o (KB eyt

ia aip — ax + 2yt
labPsub —am Fxtoy .

In these equations, ay,, stands for the lateral labial area and
fo for the difference between the externally controlled
adducting and abducting forces. Now, the physical mecha-
nism needed in order to obtain self-sustained oscillations is
clearer. The described kinematics prescribes that the labia
are moving away from each other when they present a con-
vergent profile, and moving towards each other when they
present a divergent one. Furthermore, a convergent profile
means that the average pressure between the labia is similar
to the air sac pressure (and larger than the atmospheric pres-
sure), while a divergent one makes the pressure between the
labia closer in value to the atmospheric pressure. Therefore,
when the labia move away from each other, there is a net
force in the direction of the velocity that is larger than when
the labia move towards each other. This leads to energy
transfer from the air flow to the labia.

Figure 5 shows a bifurcation diagram for this dynamical
system.'® For small values of pressure, as expected, the labia
do not oscillate. High values of pressure lead to oscillations.
Interesting enough, the model presents a cusp bifurcation,
and the line in the parameter space where a Hopf bifurcation
takes place is tangent to one of the saddle nodes of the cusp,
at a Takens-Bogdanov co-dimension two bifurcation.
Interestingly enough, this organization of the parameter
space leads to the existence of a saddle node in limit cycle
(SNILC) bifurcation (involving part of the second branch of
the saddle node bifurcation line), where the oscillations are
born with zero frequency and a finite amplitude. In this way,
labial oscillations can be born at Hopf bifurcations for high
values of tension, or in the saddle node in limit cycles for
smaller values. The last two panels in Fig. 5 show the sono-
grams of a recorded song and its synthetic replica using this
model.

The spectral content of a sound signal is not only deter-
mined by the nature of oscillations of the labia modulating
the airflow. The sound source s(t) = % plus the backpropa-
gating wave contribute to the pressure fluctuations p;(r) at
the input of the trachea of length L
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FIG. 5. Parameter space for the model described in the text. The red curves
correspond to saddle node bifurcations and the blue curve to a Hopf (a). The
sonogram of a recorded song (top panel) and the sonogram of a synthetic
sound produced by the model (bottom panel) (b).
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and the transmitted pressure wave still has to excite the oroe-
sopharingeal cavity (modeled as a Helmholtz resonator)
before constituting a reasonable approximation to birdsong.
But, it is clear that the source of spectral content richness
lies at the sound producing mechanism, and the fact that a
saddle node in limit cycle oscillation exists in the problem
predicts interesting features. For the range of parameters
where this bifurcation can be expected, low frequency
sounds should be spectrally rich, and there should be a pre-
cise relationship between the spectral content of the signal
and its fundamental frequency.

One can proceed to measure the spectral richness of a
sound segment in this way. Given a sound segment, it is pos-
sible to compute its fast Fourier transform (FFT) and recon-
struct two parameters from it.'” The first one is farr» the
average fundamental frequency (AFF), and the second one,
the mean spectral frequency (MSF), is defined as:

Jusr = Z wiei/E,
i

where o; is each frequency component of the spectrum, ¢; is
its energy, and E stands for the total energy in the spectrum.
With these parameters, we compute the spectral content
index (SCI) as SCI = fysr/fu- This definition allows us to
compare spectrally different syllables. In Fig. 6, we display
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FIG. 6. The relationship between the spectral content and the frequency for
syllables, recorded from different birds. The continuous curve is obtained
with our model: an oscillation born in a SNILC (saddle node in limit cycle),
filtered with a tube.

the computation of this index for 172 sound segments, sung
by 6 different birds. The computed values are plotted as
color points in a SCI vs the AFF space. The continuous line,
on the other hand, is obtained through the numerical integra-
tion of our physical model. To obtain different values of the
curve, the value of p; was changed, and the sounds filtered
with a 20mm tube representing the trachea. The value of k£
for the simulations was chosen so that the oscillations were
born in a saddle node in limit cycle (SNILC) bifurcation. In
this way, the growth of the curve for small values of fre-
quency reflects the “explosive” nature of oscillations born in
a SNILC.

In this model, modulating the fundamental frequency
strongly depends on the region of the space parameter where
the system operates. For high values of k, the isofrequency
curves in the (py, k) space have small local slopes.'®
Therefore, the modulation of frequencies will depend on the
modulation of k. On the contrary, for smaller values of the
restitution constant k, where the SNILC takes place, the iso-
frequency curves will be more or less parallel to the SNILC
bifurcation curve, which has strong negative local slopes in
the (py, k) space. Therefore, one can increase the fundamen-
tal frequency by increasing p; for constant values of k. This
prediction was actually tested with birds implanted with a
valve capable of depressurizing the air sac at selected parts
of a given syllable.'® In these experiments, birds singing har-
monic stacks (characterized by long sounds with constant
fundamental frequency) had their air sac pressure manipu-
lated through the activation of the valve at the end of the syl-
lables. As expected, a pressure drop induced a decrease in
the syllable’s fundamental frequency.

VI. TESTING THE PERTINENCE OF THESE MODELS

How can we test the hypothesis that it is the dynamics
and not the details of the forces involved what brings together
the acoustic features that better characterize a birdsong?

Biologists and physicists can have heated discussions
over this point. A reductionist model will always make a
biologist uneasy: once you set up your mind to study every
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biological problem in the framework of evolution (as biolo-
gists must do), the simplifications involved in any dynamical
model always seem suspicious.

We will start to address this issue by first writing an
even simpler set of equations that display the same dynamics
in its parameter space than our physical model. Since in the
region of interest, there is a Takens Bogdanov bifurcation
(where a Hopf line is tangent to one of the two saddle node
curves of the cusp bifurcation),16 we chose its normal form
as a simplified dynamical model.'® Given that three fixed
points participate in the dynamics of our physical model, we
included cubic terms in the normal form. We chose the signs
of the two quadratic terms, and the signs of the two cubic
ones, so that the same bifurcations were present in the origi-
nal problem and in the normal form. Scaling the time
through a constant 7y, the system reads

dx B

T

dy

i oy® + BPx — y7x =ty + 92 — pxy,

where o and f stand for the unfolding parameters. We
adjusted the time constant y by taking close to thirty song
segments from four birds, and computing the SCI and funda-
mental frequency of each segment. Then, for a given value
of y, we searched for the best synthetic approximation to the
original sounds, minimizing the SCI indices and frequencies
of synthetic and original sounds. For each 7, the smallest dis-
tance (smallest %) was plotted, and we chose its value so
that > presented a minimum.

But, how can we test the pertinence of this model? This
model is built to generate sounds in which fundamental fre-
quencies and spectral content are related such as in the songs
of zebra finches. But does a bird care for those features? We
performed a series of experiments in birds, taking advantage
of the amazing selectivity that some cortical neurons present
to the bird’s own song (BOS). This phenomenon, reported
by Konishi and Margoliash in the early eighties®® consists in
comparing the activity of neurons in a region of a sleeping
bird’s brain, while it listens to a recording of its own song,
with the activity present while other songs are played.
Classical controls include the reverse song, or the song of a
conspecific animal. Remarkably, the neurons will spike
much more when the BOS is played. It is interesting that in
the case of the reverse song i.e., a song played backwards,
the same frequencies are present, and yet no response is eli-
cited. Therefore, a natural test for our model would be to
compare the response of the bird to its BOS with its response
to a synthetic song generated with our normal form.

In order to create a synthetic version of a zebra finch
song, we proceeded as follows. We decomposed the song to
be copied in 20 ms successive segments, and for each one, its
fundamental frequency and SCI were computed.'® Then, a
search in the parameter space («, ) of the normal form was
performed over a grid, so that the synthetic sounds produced
would match the fundamental frequencies and the SCI of the
segment to be fitted. Then, over that set, a search was carried
out so that the SCI of the synthetic sound matched the SCI of
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the sound segment. That procedure leads, for a segment start-
ing at #;, to a pair (o (¢;), f(;)). Figure 7 shows an example.
Spectrally, the agreement is so good that it came as a bitter
surprise that this synthetic song could elicit no neural
response whatsoever when the bird was exposed to it. It was
not until the filter was better approximated that the selective
neurons in the cortex started to respond to the synthetic
songs.”! The last two pieces of the puzzle that were neces-
sary to include were 1. the oroesopharingeal cavity, which
lies between the trachea and the beak (see Fig. 1), modeled
as a Helmholtz oscillator of approximately 6 x 6 x 6 mm?
following physiological dimensions, and is acoustically
responsible for enhancing frequencies close to the 4 kHz for
zebra finches and 2. some amount of noise added to the phys-
iological parameter representing the labial tension. It is inter-
esting to observe that, in physics, when the fundamental
equations of the problem are known, it is mathematically
algorithmic to improve an approximated model. In biology,
it is not necessarily easy to know how to enrich a simplified
model that did not work. Do we know a priori that a hierar-
chy of importance exists that allows us to establish an order
in the simplifications? This question is at the core of the dif-
ficulties in modeling biological systems, and there are no
recipes beyond close interdisciplinary work.

With a model that was capable of eliciting responses of
highly selective neurons to the birds’ own songs, we
explored the sensitivity of the neural responses to modifica-
tions in the model’s parameters. We exposed sleeping birds
to synthetic songs produced by the model in which different
parameters were changed.”' In Fig. 8, we illustrate the pro-
cedure. The first three panels show the sonograms (top) and
the accumulated number of spikes that were elicited in 20
trials, each one consisting of exposing the bird to three cop-
ies of one song. In the panel on the left, the stimulus was
the bird’s own song. In the other two panels, we used syn-
thetic sounds. The different stimuli in the experiment were
generated by varying the amount of noise added to the
parameters and the dissipation of the Helmholtz resonator.
The result is shown at the bottom of Fig. 8, where the
response to each stimulus is plotted as a fraction of the
response to the BOS. Each point on the grid corresponds to
a different set of parameters (noise and dissipation). On the

10

frequency (kHz)

10

frequency (kHz)
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FIG. 7. A recorded song (top panel) and a synthetic sound (bottom panel)
generated by the model described in the text.
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FIG. 8. Testing the response of highly selective neurons to synthetic sounds generated by the model, with slightly different parameters.

one hand, the best response is 60% of that obtained using
BOS as a stimulus. On the other hand, we could verify that
the system is exquisitely sensitive to changes in the param-
eters, and rapidly ceases to elicit any response as soon as
we depart from the optimal values.*'

VIl. OTHER SIGNATURES OF NONLINEARITY

In the previous models, we assumed that both labia of a
sound source were locked and therefore we described the
dynamics of the lumen in terms of the mean position of one
of the two labia. It is a hypothesis that deserves to be
inspected with care, since the two labia will in general be
different, and it has been shown to enrich the dynamics.****
In the case of oscine birds, the syrinx is a bipartite structure,
and each of the two sound sources is itself asymmetric: the
lateral and medial labia are slightly different. Even in birds
with a tracheal syrinx (only one sound source, consisting of
two opposed labia at the trachea), the labia are not identical.
Could it be possible that, in this case, the dynamics are richer
than what we discussed so far?

If there were an asymmetry between the labia, the
dynamics of their midpoint positions would be ruled by the
following dynamical system?

d¢g,

dzé Lr
G + B(l,r) (1 + 17(17,~) 6(2]1)) dt

dr?

M + K& = Py

with M(;,y, B(;,) and K(;,) being the mass of the tissue, the
dissipative constant and the coefficient that accounts for the
restitution force of a displaced membrane, respectively
(notice that / and r stand for left and right). The constant
1, 1s a nonlinear coefficient that accounts for energy dissi-
pation at large labial displacements. As before, the average
pressure can be written in terms of the lower and upper
cross-sectional areas ay, a; as

ay — ap
Pg—Ps( a >7

where the areas can be written as functions of displacements
as

aq2)(t) = L[E + &.(t=x1,)] + L[ + & (1+1))],

with L being the membranes’ length, &, half of the lumen’s
width at rest, and 7,; the times that the right and left wave-
like motions of the respective membrane take to travel half
its vertical size. These kinematics of the labia (that assume,
as in our previous models, that a lateral mode and a wave-
like mode are active), allow us to write (for small values of
1, T,) the pressure at the lumen in terms of midpoint

displacements:
Py d&, déz) (dir déz)
& (T’ a B a T a )

P, =
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Now, we can write the final dynamical system for the left
and right labia as

d
dt = V),
dviy (28 —B) Bn 2K
o Ty Ve Mf(l,,)lf(z,r) -7 75(1@
B

+ VM (Vo) = V) -

In order to explore the solutions of this four-dimensional
dynamical system as a function of the system’s symmetry,
we introduced a detuning parameter Q at the level of the lin-
ear part of the restitution, i.e., K, = Ko, —|—K1<17r)§%]7r),
with Ko,y = QK. The effect of this asymmetry is summa-
rized in Fig. 9, where we display the different locking
regimes as a function of air sac pressure and detuning param-
eter Q. Region I in the figure corresponds to 1:1 locked solu-
tions, i.e., the two labia oscillate with the same period, while
parameters in region II lead to solutions that do not lock. If
we describe the equations in terms of a radial and a phase
component, the equations of the radial parts will contain a
term that depends on the phase difference between the left
and right oscillations. Therefore, for the region of the param-
eter space where the phase difference is time dependent, the
solutions will present sidebands in their spectrogram.”* The
reason is that the time dependent phase difference induces
the radial parts of the variables to oscillate, giving rise to
amplitude modulations.

Pressure (arb. units)
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There are two sister species of pigeons that allowed us to
test these ideas.”* One is the spot-winged pigeon Patagioenas
maculosa and the other is the picazuro pigeon P. picazuro,
hereafter called maculosa and picazuro. The temporal patterns
and the modulation of the fundamental frequency in their
songs are extremely similar, and yet the timbre of their sounds
is very different. In Fig. 9, we show their sonograms, where
we can see the appearance of sidebands in the song of macu-
losa. We were able to reproduce these bands by assuming an
asymmetry, and, more importantly, we managed to test the
hypothesis by examining the syrinx of these two species com-
paratively. As predicted, the syrinx of maculosa is significantly
asymmetric, while picazuro’s syrinx is not. In maculosa, all
individuals examined had larger left oscillating tissues.

VIil. BEYOND LOW DIMENSIONAL DYNAMICS:
VORTEX SOUND

All the acoustic effects described so far were the result of
modulating the airflow by means of a valve. The mechanism
is similar to the one used by humans when vocalizing voiced
sounds, like vowels. And just as humans also use unvoiced
sounds (such as “s,” or “f”’), some bird species alternate sylla-
bles of regular oscillations with extremely noisy sounds.

Howe developed the field of acro-acoustics.” He consid-
ered the source terms that are neglected in the linear approxi-
mation of acoustics as follows:

no oscilations

Frequency (kHz)

2.0

—— rv A ——

Frequency (kHz)

05s

= = k =

05s

FIG. 9. Asymmetric labia can generate sounds with distinctive timbre (notice the side bands in the sonograms). In the top panel is the bifurcation diagram. The
recorded sonogram of the picazuro pigeon song and the synthetic sound generated with symmetric labia (left), compared with the song of maculosa pigeon and

sound generated with asymmetric labia (right).
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with D being the material derivative, p, the ambient undis-
turbed density, w the vorticity and v the local velocity.
Notice that the vector product involves quadratic contribu-
tions of velocity to the source of sound. In this way, this
expression is a higher order correction to the homogeneous
wave equation studied in linear acoustics, so the effects that
emerge from this description should be added to those even-
tually generated by the fluctuating mass injection that results
from the modulation of airflow by a valve.

When the flow crosses the lumen before being injected
into the trachea, it separates from the walls forming a jet.
This is a focused region surrounded by stagnant air, and, in
the border of each of these regions, the air particles undergo
a rotation. This is quantified using the vorticity of the veloc-
ity field. In this way, the shear layers between the jet and the
walls coalesce into irregular structures that travel along the
trachea. When these vortices arrive at the glottal contraction,
sound is generated. The solution of the wave equation can be
written in integral form as’

. sgn(x —y
PST) = =Po i ar) ”

_sgn(x —y) B
=—Qx S(y,t

U’ |dAdy

=yl )
Co(l +M ) ’
where A is the cross-section at the observation point, M is
the Mach number and U stands for the ideal flow velocity
that would be present if the duct was filled with a uniform
and steady flow. The brackets indicate that the integral is
computed at a retarded time #,,, =t — |x — y|/(co(1 + M)).
The actual computation is particularly difficult, since it
requires the computation of flows and vorticity in a compli-
cated configuration. Yet, a qualitative approximation can be
obtained.”> The vector @ x ¥ points radially when a vortex
travels axially. The unperturbed flow U”, on the other hand,
presents a negative radial component right before the con-
striction and a positive one right after it. Therefore, the
source function S consists of a pulse whose duration is given
by At ~ H/U,, where H is a characteristic size of the con-
striction and U, is the flow speed at the constriction. We can
estimate an order of magnitude for this speed considering
that the volume of an air sac is expelled in the duration of a
typical syllable, and that the constriction is a fraction of the
tracheal radius.?® To account for the effect of a train of vorti-
ces, we compute the convolution of this source term with an
arrival function that consists of a series of delta functions at
arrival times {777}

)= j 50 T80 — T, — )

The amplitude of the nth contribution I', depends on its
circulation, which is assumed to be proportional to the differ-
ence between the nth and (n — 1)th arrival times. The rationale
behind this hypothesis is that a large time between two consec-
utive vortices means that the second one was generated far
away from the constriction, having gained circulation during
its travel towards it. Figure 10 illustrates the spectrum of a

pVOI'[(’_\' (t

Chaos 27, 092101 (2017)

— Recorded
(3
3 20
35 N 0

T
o2 20
f=
3
o
n 0

Synthesis with vortex sound
o
3 40 i l
4
2y 20 l
a3
° 0
=
=1
o
] 0
_ Synthesis without vortex sound
g
Q 40
Q
5 )
20

3
QT
2 0
8 i
v 0 1.38:10%

Frequency
(Hz)

FIG. 10. The spectrum of a song (first panel), synthetic sound with an added
vortex sound (middle panel) and the synthetic sound without a vortex sound
(bottom panel). There is a significant difference for frequencies higher than
10kHz.

recorded song, and the spectra of two synthesized versions.?
For the case displayed in the bottom panel, we followed the
procedure described in Sec. VI. For the case displayed in the
middle panel we added to that synthesis vortex sound gener-
ated as we described above. For frequencies above 10 kHz, the
spectrum of the synthesis with the vortex sound is a better
approximate to the spectrum of the recorded sound. Since the
spectrum of a convolution is the product of the spectra, and the
arrival times are taken from a uniform distribution, features
like the minima marked with arrows in Fig. 10 originate in the
pulse shape. Remarkably, sensible time and geometric estima-
tions lead to spectra with minima in the right spectral values.
These contributions carry a very small fraction of the energy,
but it will be interesting to test whether a synthesis that takes
this effect into account improves the response of selective neu-
rons to surrogate synthetic sounds.

IX. THE DYNAMICAL ORIGIN OF PHYSIOLOGICAL
INSTRUCTIONS

We have discussed how birdsong emerges when a
highly specialized biomechanical device, the syrinx, is con-
trolled by a set of exquisitely coordinated physiological
instructions (in particular, those controlling syringeal config-
uration and respiration). During the song, the normal respira-
tory activity patterns are changed for those that establish the
proper airflow necessary for phonation. These physiological
instructions are generated in songbirds by a set of intercon-
nected neural nuclei known as the song system.?”*®

The song system includes the dorsomedial nucleus (DM),
which projects to the respiratory pacemaker. This “pacemaker”
includes nucleus retroambigualis (RAm), related to expiration,
and nucleus parambigualis (PAm), which is active mostly dur-
ing inspiration. These nuclei are present in other orders of birds
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as well. But, in songbirds, the DM projects to the nucleus
uvaeformis (UVA) in the thalamus, which connects to the tel-
encephalic nucleus HVC (used as a proper name). This
nucleus, in turn, projects to the robust arcopallial nucleus
(RA), which closes the loop by projecting back to the respira-
tory nuclei. The nucleus that projects to the syringeal muscles
is called nXII, which receives inputs from the telencephalon
(RA), as well as from the respiratory nuclei and the DM. This
architecture is found symmetrically in the left and right hemi-
spheres of the bird’s brain. A schematic diagram summarizing
this description is displayed in Fig. 11. To add complexity to
the problem, most of these nuclei are built from inhibitory
interneurons and excitatory neurons (which can interconnect
within the nucleus or sometimes project from one nucleus to
another, forming a pathway). Each nucleus can have tens of
thousands to several hundreds of thousands of neurons.
Considering that unveiling how the system works requires
understanding clearly how both interneurons and projection
neurons work, it is necessary to study the neural activity of the
system with electrodes of high enough impedance so that indi-
vidual neurons can be isolated and identified. This is an
extremely difficult problem, and therefore it is not surprising

0.5sec
—
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Right hemisphere

FIG. 11. A schematic diagram of the
nuclei in the oscine song system.

that even in the case of the nucleus HVC, whose proximity to
the scalp makes recording its activity somewhat easier, its
code is a matter of heated debate.

What is surprising is that in the song system’s output, at
least in terms of respiratory gestures, one can identify signa-
tures of low-dimensional nonlinear dynamics.>**° Figure 12
displays the pressure patterns measured in the air sac of a
canary during song. Four different patterns can be identified:
a small oscillation mounted on a DC level, a regular
harmonic-like oscillation, an oscillation whose spectrum will
display two clear peaks, and a wider pattern with a slow
decay. These four basic patterns have been found in different
birds, and used to generate a variety of different syllables.>'
There is a range of syllabic rates that can be associated to
these different patterns.

In the panel below, we display four solutions of a low
dimensional nonlinear dynamical system. Each solution was
obtained by driving (differently) a two-dimensional dynami-
cal system, in which one of its variables (let us call it x) was
made to behave as the recorded air sac pressure.>” This
dynamical system was built in such a way that in a two-
dimensional parameter space, we could find a Hopf

FIG. 12. Recorded air sac pressure in a
singing canary (a). A neural oscillator,
i.e., a population of excitatory neurons
coupled to a population of inhibitory

Air sac pressure
(arb. units)

PR p

E (Synthetic
Air sac pressure)

ones (top). The bifurcation diagram
showing the different regions of the
parameter space presenting qualita-
tively different flows (bottom). The
parameters are the inputs to the neural
oscillator (b). The synthetic time series
emulating air sac pressure (c). The syl-
lables are generated changing the
parameters along the trajectories dis-
played in (b).
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bifurcation and a cusp, with the Hopf bifurcation line tangent
to one of the saddle node curves of the cusp.® With this
dynamical architecture, it is possible to reproduce the
observed air sac pressure patterns driving the dynamical sys-
tem with simpler time dependent palralmetetrs.32’33 For exam-
ple, the low rate solutions are obtained by driving the model
with the red path in Fig. 12(b). This path consists of a fast
change of p, and p, that takes the system from a region of
the parameter space where there is a fixed point of low x
value to a region with a fixed point of high x value. Then, the
parameters p,, p, are slowly decreased, and the solution
decreases first slowly, because the value of the fixed point
decreases. Then, when the saddle fixed point kills the attrac-
tor at the leftmost saddle node branch, the solution rapidly
decreases as the system collapses towards the only attractor
of the system at the left of the cusp: the original fixed point
of low x value. The tiny peaks at the beginning of the pulse
can be generated as transients, since the path that we
described reaches a region of the parameter space where the
eigenvalues of the fixed point of high x value are complex
due to the vicinity of the Hopf bifurcation line. The rest of
the patterns can be generated within this architecture as well.
The small and large amplitude oscillations with one maxi-
mum are found by placing the dynamical system in two dif-
ferent points within the region of the parameter space with
oscillations born at the Hopf bifurcation. Both solutions can
be obtained with stationary parameters p,, p,, or with
px(t), py(t) fluctuating periodically, as long as the frequency
of those fluctuations is similar to the natural frequency of the
oscillations born in the Hopf bifurcation. Remarkably, if
there is indeed a forcing frequency, and we increase it, the
system can undergo a period doubling, responding with one
pressure pulse to two peaks of the forcing. This is the pattern
marked with an asterisk in Fig. 12(c).

It is suggestive that this dynamical skeleton can be
found in the simplest model of an excitatory neural popula-
tion coupled to an inhibitory one. Using the mathematical

A B C

HvC
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description proposed by Wilson and Cowan, let us call x and
y the average activities of the excitatory and inhibitory pop-
ulations, respectively. We can describe their dynamics
through:

dx
E = —X +S(,0‘ +apx + azy),
d
% = =y + S(py + asx + asy)
with
1
Sx) =——.
(9 1 +e*

The bifurcation diagram for this system is precisely the diagram
displayed in Fig. 12(b) for (a;, az, a3, a4) = (10, —10, 10, 2).

A natural question is whether the forcing parameters
px(t), py(t) can themselves be the solutions of low dimensional
systems with variables associated to the activities of other parts
of the song system. These time dependent parameters now
summarize the inputs from both RA (the telencephalic nucleus
that projects to the respiratory nuclei) and the inputs from other
parts of the brainstem, such as the inspiratory related nucleus
PAm (which does have a subpopulation of neurons that fire
during expiration), or nucleus DM.

Figure 13 shows how to generate the four basic respira-
tory patterns used in a canary song with solutions of a
dynamical model embedding our minimal toy description of
the neural oscillator.*>** Since one of the variables of that
minimal two-dimensional dynamical system was made to
represent the air sac pressure, our neural oscillator is a toy
model for the expiratory related area RAm. Yet, the global
dynamical system in which our model of RAm is embedded
(the circular architecture displayed in Fig. 13) makes specific
predictions on the kind of activity patterns that can be
expected in other areas of the song system. For example, the
model predicts that in this species, when the long expiratory
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FIG. 13. One-way of generating synthetic pressure gestures similar to the recorded ones. The dynamical system is written in terms of the activities of intercon-

nected nuclei.
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patterns are generated, the activity of the HVC projection
neurons will be heterogeneous, with a continuous component
superimposed on peaks of activity close to the beginning of
the syllables. Notice that the respiratory patterns emerge as
the dynamics of the brainstem is affected by signals from the
telencephalon. But, it is not until they interact nonlinearly
that the richness of the solutions emerges. Anatomy supports
the idea of a circular functional architecture, as do experi-
ments in which thermal manipulation affects times scales at
different parts of the song system.>*>® However, this picture
is under construction, and it is most likely to evolve as
experiments test its predictions. For example, the degree of
heterogeneity in zebra finches’ HVC activity has been quan-
tified by the measurement of hundreds of individual neu-
rons.”’ It is likely that similar studies will be performed on
other species such as canaries in the near future, and that
other nuclei will be measured in singing birds as well.
Whatever the picture that emerges in the end, it is remark-
able that non-trivial yet low dimensional dynamics are
behind the physiological gestures necessary for birdsong pro-
duction. This offers an extremely interesting example on
how to build low dimensional dynamical systems from first
principles, for nontrivial neural architectures.

X. TOWARDS MODELS FOR AVERAGE ACTIVITIES

The results described in Sec. IX point to an interesting
issue for nonlinear dynamics and statistical physics. How to
establish the connections between the different description
timescales of out-of-equilibrium systems is an active field of
research. This is particularly relevant in neuroscience, where
the central nervous system is in charge of the physiological
instructions that control peripheral systems and, therefore, of
the interaction of the organism with the macroscopic world.
As there is no comprehensive theory to deal with out-of-
equilibrium statistical mechanics, macroscopic models of
nervous systems are usually built phenomenologically and
not statistically. Having said that, there have been very
important advances recently. In part, this is due to the capac-
ity to perform biologically informed numerical simula-
tions.>® But, there have been important advances in the
theory of collective dynamics of out of equilibrium units. In
2008, Ott and Antonsen’” reported a method to compute the
dynamics of a macroscopic observable describing the degree
of synchronization of a set of interconnected phase oscilla-
tors.***! Their result is framed into a very active line of
research: the study of globally coupled phase oscillators.
They showed that it is possible, for a class of systems, to
write a low dimensional dynamical system to describe the
asymptotic behavior of the system’s order parameter. Let us
briefly review the main ideas of this development, in the
framework of the coupling between an excitatory and an
inhibitory neural population (the basic elements of a neural
oscillator architecture we used in Sec. IX).*?

Let us assume that each excitable unit is described in
terms of its phase, and that its dynamics is modeled through
Adler’s equation. Let us also assume that the units can be
classified as excitatory and inhibitory, and that the popula-
tions are coupled:
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with

In these equations, the parameters &, k describe the cou-
pling, which consists of an impulse when 0; ~ 7, and
approaches zero as 0; ~ 0. The first approximation to the
macroscopic description of the system is through its order
parameters:

One can describe the system though the distributions of its
phases. It is in the calculation of those distributions that Ott
and Antonsen made a major contribution. These have to
obey a continuity equation (a partial differential equation),
and therefore a mode decomposition of the distributions
would lead to an infinite number of ordinary differential
equations for the mode amplitudes. Yet, for a large class of
systems, all those equations can be satisfied provided that the
first mode of each distribution is ruled by a simple dynamical
system. This allows us to simplify our problem, which can
be completely described by solving the following dynamical
system:

% = [-A+i(wo +1(z,2))]z - %(1 +22),
&+ e 9)]E— L0042
il i +i(ag +1(z,2) -5 +z7),
where the parameters (g, A, @y, A) describe the centroids
and dispersions of distributions of the parameters (w;, @;) .
The order parameters do not correspond to average
activities; they are not the variables of the phenomenological
models used in Sec. IX. The order parameters measure the
degree of synchronization of the populations. Yet, we can
compute the average activities (¢(¢), ¢ (¢)) of the populations
in terms of them.*? By definition, the average activity of the
populations can be computed as:

(1) = j £(0,0,0)(0 — cos(0) + I({z}, {2})]p_rdo>

—00
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FIG. 14. Parameter space regions of the average model.

b0 = | F(0.0.0( — cos(0) + I({2}. 21))y_odo
—00

where £ (0, w, 1) and f (0, w,t) stand for the distribution den-
sity of phases for the two populations. Expressing these dis-

tributions as functions of the order parameters, we get:

1 [1+Rez 1 Al Imz
N=————=)(wo+1+1(z,2) += |—=|,

0 n<u+zf 2><o @+

. 1 /14+Rez 1\,. . Al Imz
N==|—-5—3 +1+1(z,2) += |——=5]|,

which are quantities that can be directly compared with the
variables (x, y) of the phenomenological model studied in the
previous section.

The dynamical elements needed in the phenomenological
model to reproduce the respiratory patterns are also present in
the model derived from first principles (see Fig. 14).** It is
remarkable that a very simple phenomenological model such
as the Wilson-Cowan oscillator can capture the subtle features
that a population of coupled excitable units displays macro-
scopically. Needless to say,, our calculation assumes serious
simplifications. One of them is that we have considered an all-
to-all coupling between the units. It is likely that as soon as
more complex and informed topologies are used, larger phase
spaces will have to be explored. This might lead to more com-
plex solutions, which will lead to predictions that need to be
compared with behavioral observations.

Since different biological mechanisms can be described
in terms of the same dynamical elements, modeling will
always require a continuous dialogue between dynamics and
experiments. But, having described the physiological observ-
ables in a dynamical language, we can start to explore the—
long—road from first principles to behavior.

XI. CONCLUSIONS

This review was organized around a few questions. Is it
possible that part of the complexity of the sounds used in a
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birdsong is due to the nonlinear nature of the avian vocal
organ? Could it be that reasonably simple instructions driv-
ing this highly nonlinear device create this amazing richness
of sounds? How complex are those instructions? How can
we determine that a low dimensional model is biologically
pertinent? We got some answers to these questions by study-
ing specific problems. We found, for example, that the rela-
tionship between the fundamental frequency and the spectral
content of the sounds in the zebra finch song is the signature
of the bifurcation that gives rise to the oscillations responsi-
ble for airflow modulation. We described the dynamical
origin of subtle spectral features such as sidebands in the
sonogram of a song: it is the result of the loss of locking
between the parts of the syringeal valve for a very asymmet-
ric syrinx. But, behind all those specific stories, there is one
important question, near and dear to the heart of any dynam-
icist: how relevant is this simplifying approach to a biologi-
cal problem? Are these approximations pertinent?

When a dynamicist starts interacting with biologists, it
is always complicated. A first thought is that what lies at the
root of the difficulty is the biologist’s lack of mathematical
background, or the dynamicist’s lack of knowledge on biol-
ogy. In fact, it is even more complicated: the very same idea
of what it means to be rigorous is different in the two com-
munities. A dynamicist searches for depth and elegance in
minimal mechanisms. A biologist, on the other hand, will
not find either of those virtues without framing the problem
under study within its evolutionary context. Therefore, a
biologist will be, a priori, suspicious of reductions and
simplifications, just as a dynamicist will lose interest in a
problem as “details” start to add up. It is for these reasons
that our experiments on testing the models using selective
neurons were so important in our research program. Granted,
there were a minimal number of elements that had to be
included for the selective neurons to start reacting to our syn-
thetic sounds as they did to the bird’s own song. But, there
was a hierarchy of importance in the different elements in
the model: changes in different parameters would lead to
response losses at different rates. This opens a wide opportu-
nity for evolutionary interpretations.

It is remarkable that the diversity of pressure gestures
used in birdsong, emerging from a real brain, can be so
beautifully reproduced by integrating a periodically forced
two-dimensional dynamical system. We know that the topo-
logical organization of different orbits is a distinctive signa-
ture of the mechanisms underlying the dynamics. Therefore,
even if the particular model proposed for generating the pres-
sure gestures evolves as experiments inform us on the song
system, the identified dynamical skeleton will have to be pre-
sent in eventual upgrades to the model. A thorough and
direct testing of these neural models will take time. The con-
nections between the nuclei involve only part of the neurons
(the projecting ones), that require to measure with high imped-
ance electrodes, so that individual neurons can be identified.
Only through direct collision experiments, can the nature of
each neuron under study be verified. And, of course, enough
neurons have to be measured so that the actual physiological
instructions can be reconstructed. In the meantime, we can
improve or refute our models through indirect measurements
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that we can carry out, thanks to the existence of dynamical
models, such as the degree of heterogeneity in the average
activity of a given nucleus, or by testing the precise and quan-
titative predictions on the effect of cooling. In other words,
dynamical models are not only summaries of observations,
but ways to carry out nontrivial and precise quantitative pre-
dictions. Interestingly enough, we are now closer to obtaining
these low dimensional models from mean field computations
of coupled excitable systems. Recent developments in the
field of synchronization have provided us with tools to
advance forward from a pure phenomenological ansatz.

In this review, I have focused my attention on birdsong
production, but studying the deep connection between the bio-
mechanical periphery and the nervous system is a strategy
that will allow us advancing in our understanding of many dif-
ferent problems in neuroscience, particularly those requiring
sensory motor integration. For example, the developmental
dynamics of marmoset monkey vocal production was investi-
gated by studying in parallel the maturation of the vocal appa-
ratus and the effect of parental feedback.*® Tt is likely that
recent descriptions of the functional organization of the
human sensory-motor cortex for speech articulation will allow
us linking the average activity of specific neural populations
with the parameters needed to synthesize human speech.**

But, behavior emerges not only from the subtle interac-
tion between the nervous system and the biomechanics of
the periphery. The environment interacts with the biome-
chanics as well, and in non-trivial ways. Some animal bodies
present stable motions that require relatively little activation
or control, and it is only when the whole system (central ner-
vous system-biomechanics-environment) is analyzed that the
behavior can be understood. Lamprey dynamics during
swimming constitutes a stellar example of this phenome-
non.*> Moreover, proprioception as a mechanism of feed-
back from the body to the neural circuits involved in the
behavior is the key to understand stability and robustness. It
is clear that the more integrated a model gets, the stronger
the need for a dynamical description.

Quantitative models will enrich our study and understand-
ing of biological problems. Yet, their construction requires
subtle work. The difference in approach to a problem in phys-
ics, dynamics and biology is deeply rooted in the essence of
each discipline, and the path of working across disciplines is
hard. Nevertheless, the stories are worth the effort, and they
will probably be written in the language of dynamics.
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